References in EQF

 
 
[1] Brianchon C. J., Poncelet J.-V., Recherche sur la détermination d'une hyperbole équilatère au moyende quatre conditions données,
Annales Mathématiques de 1821
* Page 512 about Euler Circles.
 
[2a] Jean-Louis Ayme, La droite de Gauss et la droite de Steiner, available at
http://perso.orange.fr/jl.ayme   vol. 4 La droite de Gauss et la droite de Steiner.
[2b] Jean-Louis Ayme, Le point de Kantor-Hervey, available at
http://perso.orange.fr/jl.ayme   vol. 6 Le point de Kantor-Hervey.
[2c] Jean-Louis Ayme, Le Point- d’Euler-Poncelet d‘un Quadrilatère, available at
http://perso.orange.fr/jl.ayme   vol. 8 Le point d’Euler-Poncelet d’un quadrilatère.
* Page 11 Synthetical proof midcircles are concurrent
 
[3] Jean-Louis Ayme: “Méthodes et techniques en géométrie: A propos de la droite de Newton”.
 
[4] Jean Pierre Ehrmann - Steiner’s Theorems on the Complete Quadrilateral, Forum Geometricorum 4 (2004) 35-52,
 
[5] Alexei Myakishev - On Two Remarkable Lines related to a Quadrilateral, Forum Geometricorum 6 (2006) 289-295
 
[6] Alain Levelut – A note on the Hervey Point of a complete Quadrilateral, Forum Geometricorum 11 (2011) 1-7
 
[7] Heinrich Dörrie: "100 great problems of Elementary Mathematics"
* Page 213 about “A hyperbola from four points”.
* Page 231 about “The most nearly Circular Ellipse Circumscribing a Quadrilateral”
* Page 265 about “Desargues’ Involution Theorem”.
 
[8] Dick Klingens, Vlakke Meetkunde, available at
* Stelling van Poncelet-Brianchon
* Euler Cirkels (mentioning of Euler point)
* Aubel, Stelling van Van,
* Tien niet zo bekende eigenschappen van (koorden)vierhoeken
 
[9] Alexander Bogomolny – Cut The Knot! – The complete Quadrilateral
 
[10] Francisco Javier García Capitán, Baricentricas.
Description and Notebook on barycentric algebraic formulas, available at
 
[11] Hyacinthos, Internet forum for discussion on Triangle Geometry, available at
 
[12] C. Kimberling, Encyclopedia of Triangle Centers, available at
 
[13] Weisstein, Eric W., MathWorld--A Wolfram Web Resource , available at
* Anallagmatic Curve
* Anticenter
* Bimedian
* Circular points at infinity
* (Complete) Quadrangle
* (Complete) Quadrilateral
* Crossdifference
* Cyclocevian Conjugate
* Euler Triangle
* Gauss-Bodenmiller Theorem
* First/Second/Third Morley Triangle
* Harmonic Conjugate
* Isoconjugation
* Isotomic Transversal
* Nine-point Circle
* Orthopole
* Pivotal Isocubic
* Polar
* Trilinear Pole
* Trilinear Polar
* Van Aubel's Theorem
* Wittenbauer's Parallelogram 
 
[14] Philippe Chevanne, Mad Maths, Recreational mathematic collection, available at
* problem equidistance lines: http://mathafou.free.fr/pbg_en/pb127.html
* problem inscribed and circumscribed squares: http://mathafou.free.fr/pbg_en/pb122.html
 
[15] Eckart Schmidt
[15a] 05-4 Ein weiterer merkwürdiger Viereckspunkt:  
[15b] 05-6 Geometrie auf der ZirkularKurve:
[15c] 07-1 Das Steiner Dreieck von vier Punkten:
[15d] 04-5 Vierecksbezogene Inversionen:
http://eckartschmidt.de/STEIN.pdf (QL-Tf1: Clawson-Schmidt Conjugate)
[15e] 11-1 Die Brennpunktkurve eines Vierecks:
[15f] 11-3 Miquel-, Poncelet- und Bennett-Punkt eines Vierecks:
[15g] 08-6 Miquel Points and Inscribed Triangles:
[15h] 11-2 Parallelogramme eines Vierecks:
[15i] 04-3 Euler-Gerade eines Vierecks:
 
[16] Daniel Baumgartner, Roland Stärk, Ein merkwürdiger Punkt des Vierecks, available at
 
[17a] Points and Mappings:
[17b] Jean-Pierre Ehrmann and Bernard Gibert, Special Isocubics in the Triangle Plane, available at:
[17c] Note onCircular Isocubics,
[17d] Inscribed Cardioids and Eckart Cubics,
 
[18] H.M. Cundy and C.F. Parry, Geometrical properties of some Euler and circular cubics. Part 2.
Journal of Geometry 68, 2000,
p.63 on isoptic (or Bennett) point of a quadrangle
 
[19] Michael Fox, Constructions for Sketchpad
 
[20] P.S. Modenow and A.S. Parkmohenko, Geometric Transformations, Volume 2: Projective Transformations
p.24 Two fundamental Theorems on Projective Transformations
 
[21] Jim Loy, Jim Loy's Mathematics Page
* Inscribing a Square in a Quadrilateral: http://www.jimloy.com/geometry/inscribe.htm
 
[22] J.W. Clawson, The complete Quadrilateral – American Mathematical Monthly, Volume 20 (1919) pages 232-262,
 
[23] Eckart Schmidt, Mittelsenkrechtenvierecke eines Vierecks, PM 2/44 (Jg. 2002), S. 84-87
 
[24] Lang Fred, The pedal circle center transformation. – July 9, 2007.
 
[25] J.L. Coolidge, Harvard University, Two geometrical applications of the method of least squares,
 
[26] Chris van Tienhoven, Perspective Fields,
[26a] Perspective Fields part I
[26b] Perspective Fields part II
  
[27] Olga Radko and Emmanuel Tsukerman - The perpendicular bisector construction, isoptic point and Simson line, 161—189,
Forum Geometricorum, Volume 12 (2012),
 
[28] A.V. Akopyan, A.A. Zaslavski, Geometry of Conics, American Mathematical Society. ISBN 978-08218-4323-9
 
[29] C.M. Herbert, The inscribed and Circumscribed Squares of a Quadrilateral and Their Significance in Kinematic Geometry – Annals of Mathematics, Second Series, Vol. 16, No 1/4 (1914 – 1915), pages 38-42,
 
[30] Alexei Myakishev, On two remarkable lines related to a quadrilateral, Forum Geometricorum, 6 (2006) 289--295.
 
[31] J.W. Clawson, More theorems on the Complete Quadrilateral – American Mathematical Monthly, Volume 23, No. 1 (Sep., 1921) pages 40-44,
 
[32] Eisso J. Atzema - An Elementary Proof of a Theorem by Emelyanov, Forum Geometricorum 8 (2008) 201-204
 
[33] Anopolis, Internet forum for discussions on Elementary Geometry,
 
[34] Quadri-Figures-Group, Internet forum for discussions on topics related to Quadrilaterals, Quadrangles, etc.
 
[35] Wikipedia, The free Encyclopedia, about the Möbius Transformation.
 
[36] Benedetto Scimemi, Central Points of the Complete Quadrangle - Milan. J. Math., 75 (2007) 333–356.
 
[37] F. Morley, Extensions of Cliffords Chain-Theorem, Amer J Math, 51 (1929) 465-472.

[38] S. Kantor, Quelques théorèmes nouveaux sur l’hypocycloïde à trois rebroussements,
Bulletin des sciences mathématiques et astronomiques (1879).
 
[39] M. Victor Thébault, Sur le quadrilatere complet, C. R. Acad. Sci., Paris 217, 97-99 (1943),
 
[40] J.W. Clawson, An Inversion of the complete Quadrilateral – American Mathematical Monthly, Volume 24, No 2 (Feb., 1917) pages 71-73,
 
[41] Martin Josefsson - Characterizations of Trapezoids, Forum Geometricorum Volume 13 (2013) 23–35.
 
[42] Darij Grinberg, Poncelet points and antigonal conjugates,
 
[43] Bernard Keizer, La Géométrie du Quadrilatère Complet.
 
[44] Schwerpunkte von Vierecken (I),Wurzel 48-2/2014, 35-41 (mit Günter Pickert)
English Version: Rudolf Fritsch and Guenter Pickert, The Seebach-Walser Line of a Quadrangle.
CRUX Mathematicorum 39-4/2014, 178-184
 
[45] M. Léon Ripert, Notes sur le quadrilatère, available at:
(pages 106-118)
 
[46] H.V. Mallison, Pedal Circles and the Quadrangle.
Math. Gazette 42 (1958), 17-20,
 
[47] F. Morley, On Reflexive Geometry, Trans Amer Math Soc, 8 (1907) 14-24
available at:
 
[48] F. Morley,On the Metric Geometry of the N-Line, Trans Amer Math Soc, 1 (1900) 97-115
available at:
 
[49] F. Morley, Orthocentric properties of the plane n-Line, Trans Amer Math Soc, 4 (1903) 1-12
available at:
 
[50] Advanced Plane Geometry, Internet forum for discussions on Advanced Plane Geometry,
 
[51] M. Chasles, Annales De Mathematique 18 (1827-1828), p.297,
 
[52] Paris Pamfilos, Gallery Geometrikon,
Item “All rectangular hyperbolas tangent to four lines
 
[53] H.S.M. Coxeter - The Real Projective Plane. Springer-Verlag, 1993
 
[54] Angel Montesdeoca - Apuntes de Geometrıa Proyectiva Conicas y Cuadricas
 
 
 
 
Chris van Tienhoven,
 
 
 
 
 
 

Add a comment


Antispam code
Renew