QA-Tr-2: (Quadri-)Perspective QA-Triple Triangles
 
For explanation of Perspective QA-Triple Triangles see QA-Tr-1
 
Triple Triangle-1
formed by the 3
QA-versions of:
Triple Triangle-2
formed by the 3
QA-versions of:
Perspector
Point at infinity of QA-L4   *)
QA-Px
QA-Px
All Component Triangles (QA-4Tr1)
Desmic
QA-P1.QA-P10 (3:2)   *)
All Component Triangles (QA-4Tr1)
Desmic
QA-P5.QA-P16^polar QA-P16 wrt QA-DT-conic(QA-P10,QA-P17)   *)
QA-Px
Midpoint (QA-P1, QA-P33)   *)
QA-Px
QA-Px
QA-P11.QA-P32 (2:1)    *)
QA-Px
Point on QA-Cu2:   *)
QA-P1.QA-P17 ^ QA-P16.QA-P20
QA-Px
QA-P1.QA-P10 (3:2)   *)
All Component Triangles (QA-4Tr1)
Desmic
All Component Triangles (QA-4Tr1)
Desmic
All Component Triangles (QA-4Tr1)
Desmic
QA-Px
All Component Triangles (QA-4Tr1)
Desmic
All Component Triangles (QA-4Tr1)
Desmic
All Component Triangles (QA-4TR1)
Desmic
 
QA-Px stands for some QA-point that is not registered in EQF.
Points indicated by *) are found by Eckart Schmidt. See Ref-34, QFG#1268.
 
Apart from the configuration where some Triple Triangles are Desmic with the QA-Component Triangles, there also is a situation where a set of 3 different Triple Triangles form a desmic configuration. Especially the desmic configuration of Triple Triangles QG-P2, QG-P8, QG-P15 is noteworthy as well as the desmic configuration of Triple Triangles QG-P1, QG-P18, QG-P19. Being desmic the triangles have to be mutually perspective. See Ref-34, QFG#2017.
 

 

 

Add a comment


Antispam code
Renew