QA-Tr-3: (Quadri-)Orthologic QA-Triple Triangles

 
Two triangles A1B1C1 and A2B2C2 are Orthologic if the perpendiculars from the vertices A1, B1, C1 on the sides B2C2, A2C2, and A2B2 are concurrent.
The point of concurrence is known as the Orthology Center of A1B1C1 with respect to A2B2C2.
If this is the case, then the perpendiculars from the vertices A2, B2, C2 on the sides B1C1, A1C1, and A1B1 are also concurrent, as shown by Steiner in 1827. See Ref-13, Orthologic Triangles. The point of concurrence is known as the Orthology Center of A2B2C2 with respect to A1B1C1.
Here is a list of Orthologic pairs of Triple Triangles in a Quadrangle.
 
Triple Triangle-1
formed by 3
QA-versions of:
Triple Triangle-2
formed by 3
QA-versions of:
Orthology Center-1
Orthology Center-2
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
All Component Triangles (QA-4Tr1)
Quadri-
Orthologic
Quadri-
Orthologic
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
All Component Triangles (QA-4Tr1)
Quadri-
Orthologic
Quadri-
Orthologic
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
All Component Triangles (QA-4Tr1)
Quadri-
Orthologic
Quadri-
Orthologic
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
QA-Px
 
QA-Px is a QA-point not registered in EQF.
 

 
Plaats reactie