QG-L2: The Harmonic Line
The Harmonic Line is the line through QA-P16 (the harmonic point of a Quadrangle) and QL-P13 (the harmonic point of a Quadrilateral) both meeting in their overlap of a Quadrigon.
Coefficients:
CT-Coefficients QG-L2 in 3 QA-Quadrigons:
- (q r (-q + r) : p r (2 p + q + r) : -p q (2 p + q + r))
- (q r (p + 2 q + r) : p r (r - p) : -p q (p + 2 q + r))
- (q r (p + q + 2 r) : -p r (p + q + 2 r) : p q (-p + q))
CT-Coefficients QG-L2 in 3 QL-Quadrigons:
- ( 2 l2 (m - n) : m (l m - l n + m n) : -n (-l m + l n + m n) )
- ( l (l m + l n - m n) : 2 m2 (l - n) : -n (-l m + l n + m n) )
- ( l (l m + l n - m n) : -m (l m - l n + m n) : 2 (l - m) n2 )
-------------------------------------------------------------------------------------------------------------------
DT-Coefficients QG-L2 in 3 QA-Quadrigons:
- ( r2 : 0 : -p2)
- ( 0 : -r2 : q2)
- (-q2 : p2 : 0 )
DT-Coefficients QG-L2 in 3 QL-Quadrigons:
- ( l2 : 0 : -n2)
- ( 0 : -m2 : n2)
- (-l2 : m2 : 0 )
Properties:
T is also the Involution Center of (QL-DT1,QL-DT2) and (QA-DT1,QA-DT2).
(notes Eckart Schmidt)