QL-Co-1: Inscribed Quadrilateral Conics


5th Line Conics

By adding an extra line to the set of 4 basic lines of a Quadrilateral we get a configuration of 5 lines. Let L5 (u:v:w) be a random 5th line. Five lines do define a unique (inscribed) conic just like 5 points do define a unique (circumscribed) conic.

Equation Conic in CT-notation

Tx2 x2 + Ty2 y2 + Tz2 z2 + 2 Ty Tz y z + 2 Tz Tx x z + 2 Tx Ty x y = 0

where:

Tx = l u (m w – n v)

Ty = m v (n u – l w)

Tz = n w ( l v – m u)

CT-Coordinates Center

(Ty + Tz : Tx + Tz : Tx + Ty)

CT-Coefficients Asymptotes

Asy-1(Tx (Tx + Ty) (Tx + Ty + Tz) – (Tx + Ty) √ [-Tx Ty Tz (Tx + Ty + Tz)] :

-Ty(Tx + Ty) (Tx + Ty + Tz) – (Tx + Ty) √ [-Tx Ty Tz (Tx + Ty + Tz)] :

-Tz(Tx – Ty) (Tx + Ty + Tz) + (Tx + Ty + 2 Tz) √ [-Tx Ty Tz (Tx + Ty + Tz)] )

Asy-2(Tx (Tx + Ty) (Tx + Ty + Tz) + (Tx + Ty) √ [-Tx Ty Tz (Tx + Ty + Tz)] :

-Ty(Tx + Ty) (Tx + Ty + Tz) + (Tx + Ty) √ [-Tx Ty Tz (Tx + Ty + Tz)] :

-Tz(Tx – Ty) (Tx + Ty + Tz) – (Tx + Ty + 2 Tz) √ [-Tx Ty Tz (Tx + Ty + Tz)] )

Equation Conic in DT-notation

Ty Tz x2 + Tz Tx y2 + Tx Ty z2 = 0

where:

Tx = n2 v2 – m2 w2 Ty = l2 w2 – n2 u2 Tz = m2 u2 – l2 v2

DT-Coordinates Center

(Tx : Ty : Tz)

DT-Coefficients Asymptotes

Asy-1(Tz (Ty2 + Tx Ty + Ty Tz – √ [-Tx Ty Tz (Tx + Ty + Tz)] :

-Tz (Tx2 + Tx Ty + Tx Tz + √ [-Tx Ty Tz (Tx + Ty + Tz)] :

(Tx + Ty) √ [-Tx Ty Tz (Tx + Ty + Tz)])

Asy-2(Tz (Ty2 + Tx Ty + Ty Tz + √ [-Tx Ty Tz (Tx + Ty + Tz)] :

-Tz (Tx2 + Tx Ty + Tx Tz) – √ [-Tx Ty Tz (Tx + Ty + Tz)] :

-(Tx + Ty) √ [-Tx Ty Tz (Tx + Ty + Tz)])

Properties
  • QL-Co1 (Inscribed Parabola) and QL-Co2 (Inscribed Midline Hyperbola) are both examples of 5th Line Conics.
  • The Center of a 5th Line Conic is always a point on the Newton Line QL-L1.

Center constructed inscribed Conics

It is also possible to define an inscribed Quadrilateral Conic by the 4 basic lines of the Reference Quadrilateral and the Center of the conic. This appointed center should be a point on the Newton Line (see properties 5th Line Conics).

Let N = (d : e : f) be a point on the Newton Line and be appointed as the center of an inscribed quadrilateral conic.

Equation Conic in CT-notation

(-d+e+f)2 x2 – 2 ( d+e–f) (d–e+f) y z

+ (d-e+f)2 y2 – 2 (-d+e+f)(d+e–f) x z

+ (d+e–f)2 z2 – 2 (-d+e+f)(d–e+f) x y = 0

4 Points of tangency in CT-notation
  • ( 0 : d+e–f : d–e+f )
  • ( d+e–f : 0 : -d+e+f )
  • ( d–e+f : -d+e+f : 0 )
  • ( (d+e–f)2 m2+2 ( d–e+f) f n2 + 2( d+e–f) (d–e+f) m n :

   (d+e–f)2 l2 +2 (-d+e+f) f n2 + 2(-d+e+f) (d+e–f) l n :

(d+e–f) ((d–e+f) l2+(-d+e+f) m2) )

Equation Conic in DT-notation:

e f x2 + d f y2 + d e z2 = 0

4 Points of tangency in DT-notation

( -d l : e m : f n )

( d l : -e m : f n )

( d l : e m : -f n )

( d l : e m : f n )

When N = QL-L1 ^ QL-L6 then one of the axes of the Center Conic coincides with the Newton Line (note Eckart Schmidt).

Properties:
  • When N = QL-L1 ^ QL-L6 then one of the axes of the Center Conic coincides with the Newton Line (note Eckart Schmidt).



Estimated human page views: 466

Scroll naar boven