Triangle Geometry

Geometric Entities in a 3-Element Framework

 

EPG describes items constructed from a reference system consisting of n points and/or n lines, where n ≥ 3.

When n = 3, this corresponds to the triangular case, where the reference system is based on either three points or three lines. This case has been extensively documented in the literature.


Three primary sources are:
ETCEncyclopedia of Triangle Centers  by Clark Kimberling
CTCCatalogue of Triangle Cubics  by Bernard Gibert
MathWorldMathematical reference work  by Eric W. Weisstein


Within EPG, triangle-related information will primarily be referenced through these established sources. The following table summarizes the generic EPG-style codings for triangle-based elements:

 

Generic Code Description Source Presentation Example Code Example Name Reference
TR-Px Triangle Points ETC X(nnn) X(1) Incenter Ref‑1a
    MathWorld Alphabetic list Orthocenter Ref‑1b
TR-2Px Triangle Bicentric Pairs ETC P(nnn) P(1) Brocard Points Ref‑2
TR-Lx Triangle Lines ETC Numerical list Line(44) Eulerline Ref‑3a
    MathWorld Alphabetic list Brocard Axis Ref‑3b
TR-Trx Triangle Triangles ETC Alphabetic list Intouch Triangle Ref‑4a
    MathWorld Alphabetic list Medial Triangle Ref‑4b
TR-Tfx Triangle Transformations ETC Alphabetic list Isogonal Conjugate Ref‑5
TR-Cix Triangle Circles MathWorld Alphabetic list Circumcircle Ref‑6
TR-Cox Triangle Conics MathWorld Alphabetic list Steiner Inellipse Ref‑7
TR-Cux Triangle Cubics CTC Knnn K001 Neuberg Cubic Ref‑8a
    MathWorld Alphabetic list Darboux Cubic Ref‑8b
TR-Cvx Triangle Higher Degree Curves CTC Qnnn Q000 Steiner Deltoids Ref‑9
TR-Pfx Triangle Perspective Fields EPG PF[Xi,Xj,Xk;Xl] PF[X13,X2,X6;X15] Main Perspective Field TR-Pf0
TR-Plsx Triangle Persp. Linear Sets EPG PLS[Xi,Xj;Xk] PLS[X2,X4;X3] Main Eulerline Linear Set TR-Pf0



Estimated human page views: 50

Scroll naar boven