QA-P44 Least Squared Distance Point of QA-sidelines
QA-P44 is the point with the Least Sum of Squared Distances to the six sidelines of a Quadrangle.
For a discussion on this point see [34], QFG-messages #13, #1569 and following messages.
Construction:
The point can be constructed in a similar way as described in the 1st construction of QL-P26 according to [25].
Another construction (see [34], QFG-message #1589):
- Let P1, P2, P3, P4 be the 4 defining points of the Reference Quadrangle QA.
- Let Gi be the Centroid of the orthogonal projection points of Pi on the 6 sidelines of QA.
- Let Sij=Pi.Pj^Gi.Gj for all combinations i=1,2,3,4, j=1,2,3,4, i<>j.
- Let Coi=Conic(Pi,Gi,Sij,Sik,Sil), where i,j,k,l have different values from (1,2,3,4).
- This delivers the 4 conics Co1, Co2, Co3, Co4 with common point QA-P44.
- Moreover these conics are orthogonal hyperbolas with 4 sets of parallel asymptotes.

1st CT-Coordinate
a6 q2 (p + q) r2 (p + r)
+c6 p2 q2 (p + r) (3 q + 2 r)
+b6 p2 (p + q) r2 (2 q + 3 r)
-b4 c2 p2 r (4 p2 q – 4 q3 + 6 p2 r + 9 p q r + 2 q2 r + 6 p r2 + 7 q r2)
-b2 c4 p2 q (6 p2 q + 6 p q2 + 4 p2 r + 9 p q r + 7 q2 r + 2 q r2 – 4 r3)
+a4 c2 q2 r (p + r) (2 p2 – 2 q2 – 2 p r – q r)
+a4 b2 q (p + q) r2 (2 p2 – 2 p q – q r – 2 r2)
-a2 c4 p q2 (p + r) (3 p q + 3 q2 + 4 p r – r2)
-a2 b4 p (p + q) r2 (4 p q – q2 + 3 p r + 3 r2)
+2 a2 b2 c2 p q r (2 p3 – p2 q – 2 p q2 + q3 – p2 r – 4 p q r – 3 q2 r – 2 p r2 – 3 q r2 + r3)
The sum of squared distances for QA-P44 is:
((-a + b + c) (a + b – c) (a – b + c) (a + b + c) (-6 b2 c4 p4 q2 – 3 a2 c4 p3 q3 – 3 b2 c4 p3 q3 + 3 c6 p3 q3 – 6 a2 c4 p2 q4 + 4 a2 b2 c2 p4 q r – 4 b4 c2 p4 q r – 4 b2 c4 p4 q r + 2 a4 c2 p3 q2 r – 4 a2 b2 c2 p3 q2 r + 2 b4 c2 p3 q2 r – 4 a2 c4 p3 q2 r – 4 b2 c4 p3 q2 r + 2 c6 p3 q2 r + 2 a4 c2 p2 q3 r – 4 a2 b2 c2 p2 q3 r + 2 b4 c2 p2 q3 r – 4 a2 c4 p2 q3 r – 4 b2 c4 p2 q3 r + 2 c6 p2 q3 r – 4 a4 c2 p q4 r + 4 a2 b2 c2 p q4 r – 4 a2 c4 p q4 r – 6 b4 c2 p4 r2 + 2 a4 b2 p3 q r2 – 4 a2 b4 p3 q r2 + 2 b6 p3 q r2 – 4 a2 b2 c2 p3 q r2 – 4 b4 c2 p3 q r2 + 2 b2 c4 p3 q r2 + a6 p2 q2 r2 – a4 b2 p2 q2 r2 – a2 b4 p2 q2 r2 + b6 p2 q2 r2 – a4 c2 p2 q2 r2 – 12 a2 b2 c2 p2 q2 r2 – b4 c2 p2 q2 r2 – a2 c4 p2 q2 r2 – b2 c4 p2 q2 r2 + c6 p2 q2 r2 + 2 a6 p q3 r2 – 4 a4 b2 p q3 r2 + 2 a2 b4 p q3 r2 – 4 a4 c2 p q3 r2 – 4 a2 b2 c2 p q3 r2 + 2 a2 c4 p q3 r2 – 6 a4 c2 q4 r2 – 3 a2 b4 p3 r3 + 3 b6 p3 r3 – 3 b4 c2 p3 r3 + 2 a4 b2 p2 q r3 – 4 a2 b4 p2 q r3 + 2 b6 p2 q r3 – 4 a2 b2 c2 p2 q r3 – 4 b4 c2 p2 q r3 + 2 b2 c4 p2 q r3 + 2 a6 p q2 r3 – 4 a4 b2 p q2 r3 + 2 a2 b4 p q2 r3 – 4 a4 c2 p q2 r3 – 4 a2 b2 c2 p q2 r3 + 2 a2 c4 p q2 r3 + 3 a6 q3 r3 – 3 a4 b2 q3 r3 – 3 a4 c2 q3 r3 – 6 a2 b4 p2 r4 – 4 a4 b2 p q r4 – 4 a2 b4 p q r4 + 4 a2 b2 c2 p q r4 – 6 a4 b2 q2 r4)) /
(4 (-6 a2 b2 c4 p4 q2 – 3 b4 c4 p4 q2 – 2 b2 c6 p4 q2 – 3 a4 c4 p3 q3 – 12 a2 b2 c4 p3 q3 – 3 b4 c4 p3 q3 + 2 a2 c6 p3 q3 + 2 b2 c6 p3 q3 + c8 p3 q3 – 3 a4 c4 p2 q4 – 6 a2 b2 c4 p2 q4 – 2 a2 c6 p2 q4 + 4 a4 b2 c2 p4 q r – 2 a2 b4 c2 p4 q r – 2 b6 c2 p4 q r – 2 a2 b2 c4 p4 q r – 6 b4 c4 p4 q r – 2 b2 c6 p4 q r + 2 a6 c2 p3 q2 r + 2 a4 b2 c2 p3 q2 r – 4 a2 b4 c2 p3 q2 r – 3 a4 c4 p3 q2 r – 22 a2 b2 c4 p3 q2 r – 3 b4 c4 p3 q2 r + 2 b2 c6 p3 q2 r + c8 p3 q2 r – 4 a4 b2 c2 p2 q3 r + 2 a2 b4 c2 p2 q3 r + 2 b6 c2 p2 q3 r – 3 a4 c4 p2 q3 r – 22 a2 b2 c4 p2 q3 r – 3 b4 c4 p2 q3 r + 2 a2 c6 p2 q3 r + c8 p2 q3 r – 2 a6 c2 p q4 r – 2 a4 b2 c2 p q4 r + 4 a2 b4 c2 p q4 r – 6 a4 c4 p q4 r – 2 a2 b2 c4 p q4 r – 2 a2 c6 p q4 r – 6 a2 b4 c2 p4 r2 – 2 b6 c2 p4 r2 – 3 b4 c4 p4 r2 + 2 a6 b2 p3 q r2 – 3 a4 b4 p3 q r2 + b8 p3 q r2 + 2 a4 b2 c2 p3 q r2 – 22 a2 b4 c2 p3 q r2 + 2 b6 c2 p3 q r2 – 4 a2 b2 c4 p3 q r2 – 3 b4 c4 p3 q r2 + a8 p2 q2 r2 + 2 a6 b2 p2 q2 r2 – 6 a4 b4 p2 q2 r2 + 2 a2 b6 p2 q2 r2 + b8 p2 q2 r2 + 2 a6 c2 p2 q2 r2 – 12 a4 b2 c2 p2 q2 r2 – 12 a2 b4 c2 p2 q2 r2 + 2 b6 c2 p2 q2 r2 – 6 a4 c4 p2 q2 r2 – 12 a2 b2 c4 p2 q2 r2 – 6 b4 c4 p2 q2 r2 + 2 a2 c6 p2 q2 r2 + 2 b2 c6 p2 q2 r2 + c8 p2 q2 r2 + a8 p q3 r2 – 3 a4 b4 p q3 r2 + 2 a2 b6 p q3 r2 + 2 a6 c2 p q3 r2 – 22 a4 b2 c2 p q3 r2 + 2 a2 b4 c2 p q3 r2 – 3 a4 c4 p q3 r2 – 4 a2 b2 c4 p q3 r2 – 2 a6 c2 q4 r2 – 6 a4 b2 c2 q4 r2 – 3 a4 c4 q4 r2 – 3 a4 b4 p3 r3 + 2 a2 b6 p3 r3 + b8 p3 r3 – 12 a2 b4 c2 p3 r3 + 2 b6 c2 p3 r3 – 3 b4 c4 p3 r3 – 3 a4 b4 p2 q r3 + 2 a2 b6 p2 q r3 + b8 p2 q r3 – 4 a4 b2 c2 p2 q r3 – 22 a2 b4 c2 p2 q r3 + 2 a2 b2 c4 p2 q r3 – 3 b4 c4 p2 q r3 + 2 b2 c6 p2 q r3 + a8 p q2 r3 + 2 a6 b2 p q2 r3 – 3 a4 b4 p q2 r3 – 22 a4 b2 c2 p q2 r3 – 4 a2 b4 c2 p q2 r3 – 3 a4 c4 p q2 r3 + 2 a2 b2 c4 p q2 r3 + 2 a2 c6 p q2 r3 + a8 q3 r3 + 2 a6 b2 q3 r3 – 3 a4 b4 q3 r3 + 2 a6 c2 q3 r3 – 12 a4 b2 c2 q3 r3 – 3 a4 c4 q3 r3 – 3 a4 b4 p2 r4 – 2 a2 b6 p2 r4 – 6 a2 b4 c2 p2 r4 – 2 a6 b2 p q r4 – 6 a4 b4 p q r4 – 2 a2 b6 p q r4 – 2 a4 b2 c2 p q r4 – 2 a2 b4 c2 p q r4 + 4 a2 b2 c4 p q r4 – 2 a6 b2 q2 r4 – 3 a4 b4 q2 r4 – 6 a4 b2 c2 q2 r4))
Properties
- QA-P44 is also the Centroid of the orthogonal projection points of QA-P44 on the six sidelines.
Estimated human page views: 511
