QG-L3: The QG-Centroids Line


The QG-Centroids Line is the line connecting the 1st and 2nd QG-Quasi Centroids in a Quadrigon. This line is also called the Seebach-Walser Line. See [44].

This line also can be obtained in another way:

Qi divides PiPi+1 with ratio r, Ri divides Pi Pi-1 with ratio r. The sides QiRi yield a Wittenbauer type of parallelogram. The locus of diagonal crosspoints of these parallelograms with variable r, will be QG-L3. See [66], QPG#496 and [67].

Infovisual QG-L3-infovisual-cvt-01.png
CT-Coefficients QG-L3 in 3 QA-Quadrigons

(r (p + 2 q + r) : (p – r) (p + q + r) : -p (p + 2 q + r))

((q – r) (p + q + r) : r (2 p + q + r) : -q (2 p + q + r))

(q (p + q + 2 r) : -p (p + q + 2 r) : (p – q) (p + q + r))

CT-Coefficients QG-L3 in 3 QL-Quadrigons

(l (m – n) (l m + l n – m n) : m (l – n) (-l m + 2 m2 + l n – m n) : -(l – m) n (l m – l n – m n))

(l (m – n) (l m + l n – m n) : -m (l – n) (l m – l n + m n) : (-l + m) n (l m – l n – m n + 2 n2))

(-l (m – n) (2 l2 – l m – l n + m n) : -m (l – n) (l m – l n + m n) : -(l – m) n (l m – l n – m n))

DT-Coefficients QG-L3 in 3 QA-Quadrigons

(r2 (-p2 – q2 + r2) : 0 : p2 (-p2 + q2 + r2))

(0 : r2 (p2 + q2 – r2) : q2 (-p2 + q2 – r2))

(q2 (p2 – q2 + r2) : p2 (p2 – q2 – r2) : 0)

DT-Coefficients QG-L3 in 3 QL-Quadrigons

(l2 – m2 : 0 : m2 – n2)

(n2 – l2 : m2 – n2 : 0)

(0 : l2 – m2 : n2 – l2)

Properties



Estimated human page views: 480

Scroll naar boven