QL-2P3: Schmidt Pair of Points


Let the circle with Center QL-P1 and with radius = โˆš[MA.MC] = โˆš[MB.MD] be called the Schmidt Circle.

The Clawson-Schmidt Conjugate of a point P is the Inversion wrt the Schmidt Circle of the Reflection in the 1st Steiner Axis. See QL-Tf1.

The Schmidt Pair of Points QL-2P3a and QL-2P3b are those 2 points that are invariant wrt the Clawson-Schmidt Conjugate QL-Tf1. They are the intersection points of the Schmidt Circle and the 1st Steiner Axis (see QL-Tf1).

Infovisual QL-2P3-infovisual-cvt-01.png
Coordinates:

When the Miquel triangle is reference triangle ABC (with C in the Miquel point), then the barycentric coordinates of QL-2P3a/b are:

  • ( a(a+b+โˆš((a+b)2-c2) : b(a+b+โˆš((a+b)2-c2) : -c2),
  • ( a(a+b -โˆš((a+b)2-c2) : b(a+b -โˆš((a+b)2-c2) : -c2).

See [34], QFG # 337 by Eckart Schmidt.

Properties
  • For each QL-Quadrigon Pi, Pi+2, QL-2P3a/b and Pi+1, Pi+3, QL-2P3a/b are concyclic. See [34], QFG # 348 by Eckart Schmidt.
  • For each QL-Quadrigon circumcircles through Pi, Pi+1, QL-2P3a/b and Pi+2, Pi+3, QL-2P3a/b are tangent in QL-2P3a/b. See [34], QFG # 348 by Eckart Schmidt.
  • QL-2P3a and QL-2P3b are both the Isogonal Center (QA-P4) of their pedal quadrangle. See [34], QFG # 348 by Eckart Schmidt.



Estimated human page views: 606

Scroll naar boven