QG-Co1: Inscribed Harmonic Conic


There is a projective transformation from 4 lines in a square to any other set of 4 lines.

See chapter QG-Tf1: QG-Projective Square Transformation.

The Inscribed Harmonic Conic is the projective transformation of the inscribed circle in a square to the Reference Quadrigon. This conic touches the sidelines of the Quadrigon in their perspective midpoints.

See picture below.

Infovisual QG-Co1-infovisual-cvt-01.png
Construction QG-Co1
Infovisual QG-Co1-infovisual-cvt-02.png
Equation QG-Co1 in 3 QA-Quadrigons in CT-notation:

q2 r2 x2 + p2 r2 y2 + p2 q2 z2 – 6 p q r2 x y + 2 p2 q r y z + 2 p q2 r x z

q2 r2 x2 + p2 r2 y2 + p2 q2 z2 + 2 p q r2 x y – 6 p2 q r y z + 2 p q2 r x z

q2 r2 x2 + p2 r2 y2 + p2 q2 z2 + 2 p q r2 x y + 2 p2 q r y z – 6 p q2 r x z

Equation QG-Co1 in 3 QL-Quadrigons in CT-notation:

l2 x2 + m2 y2 + 4 n2 z2 – 2 l m x y + 4 m n y z + 4 l n x z

4 l2 x2 + m2 y2 + n2 z2 + 4 l m x y – 2 m n y z + 4 l n x z

l2 x2 + 4 m2 y2 + n2 z2 + 4 l m x y + 4 m n y z – 2 l n x z

Equation QG-Co1 in 3 QA-Quadrigons in DT-notation:

q2 r2 x2 – p2 r2 y2 + p2 q2 z2

-r2 q2 x2 + r2 p2 y2 + p2 q2 z2

q2 r2 x2 + r2 p2 y2 – q2 p2 z2

Equation QG-Co1 in 3 QL-Quadrigons in DT-notation:

2 x2 l2 – y2 m2 + 2 z2 n2

-x2 l2 + 2 y2 m2 + 2 z2 n2

2 x2 l2 + 2 y2 m2 – z2 n2

Properties



Estimated human page views: 476

Scroll naar boven