QG-Co2: Circumscribed Harmonic Conic
The Circumscribed Harmonic Conic is the projective transformation of the circumscribed circle of a square to the Reference Quadrigon.
See chapter QG-Tf1: QG-Projective Square Transformation.
This conic touches the sidelines of the projective circumscribed Quadrigon at the vertices of the Reference Quadrigon.
See picture below.

Construction QG-Co2

Equation QG-Co2 in 3 QA-Quadrigons in CT-notation:
-2 r x y + q x z + p y z
r x y – 2 q x z + p y z
r x y + q x z – 2 p y z
Equation QG-Co2 in 3 QL-Quadrigons in CT-notation:
l2 x2 + l m x y + l n x z – m n y z
m2 y2 + l m x y – l n x z + m n y z
n2 z2 – l m x y + l n x z + m n y z
Equation QG-Co2 in 3 QA-Quadrigons in DT-notation:
q2 r2 x2 – 2 p2 r2 y2 + p2 q2 z2
-2 q2 r2 x2 + p2 r2 y2 + p2 q2 z2
q2 r2 x2 + p2 r2 y2 – 2 p2 q2 z2
Equation QG-Co2 in 3 QL-Quadrigons in DT-notation:
x2 l2 – y2 m2 + z2 n2
-x2 l2 + y2 m2 + z2 n2
x2 l2 + y2 m2 – z2 n2 = 0
Properties
- The Center of QG-Co2 is QG-P13.
- The Diagonal Triangles QA-Tr1 and QL-Tr1 are self-polar wrt QG-Co2 (Eckart Schmidt, August 24, 2012).
- The Triangle QG-P1.QG-P2.QG-P3 is self-polar wrt QG-Co2.
- QL-P1 lies on the polar of QG-P16 (and invers) wrt QG-Co2. See [34] Eckart Schmidt , October 9, 2013, QFG-message # 286.
- The polar of QG-P12 wrt QG-Co2 is parallel to QG-L1 (QG-P1-Railway Watcher, see QL-L-1). See [34] Eckart Schmidt , October 9, 2013, QFG-message # 286.
- The polar of QG-P3 wrt QG-Co2 is QG-P1.QG-P2. See [34] Eckart Schmidt , October 9, 2013, QFG-message # 286.
Estimated human page views: 505
