QA-Co4: QA-DT-P3-P12 Orthogonal Hyperbola


QA-Co4 is the circumscribed orthogonal hyperbola of the Diagonal Triangle (QA-DT) of the Reference Quadrangle passing through the Gergonne-Steiner Point (QA-P3).

Infovisual QA-Co4-infovisual-cvt-01.png
Conic-equation in CT-notation:

(a2 (q – r) /(q + r) – b2 (p + 3 r)/(p + r) + c2 (p + 3 q)/(p + q)) q r x2

+ (a2 (q + 3 r) /(q + r) – b2 (p – r) /(p + r) – c2 (3 p + q) /(p + q)) p r y2

+ (-a2 (3 q + r)/(q + r) + b2 (3 p + r)/(p + r) + c2 (p – q) /(p + q)) p q z2

– (a2 (p q + q2 – p r + 3 q r)/(q + r) – b2 (p2 + p q + 3 p r – q r)/(p + r) + c2 (p – q)) r x y

– (a2 (p q – p r – 3 q r – r2) /(q + r) – b2 (p – r) + c2 (p2 + 3 p q + p r – q r)/(p + q)) q x z

– (a2 (q – r) – b2 (p q – 3 p r – q r – r2)/(p + r) – c2 (3 p q + q2 – p r + q r)/(p + q)) p y z = 0

Conic-equation in DT-notation:

((a2-b2) r2 – c2 (p2-q2)) x y

+ ((c2-a2) q2 – b2 (r2-p2)) x z

+ ((b2-c2) p2 – a2 (q2-r2)) y z = 0

1st CT-coordinate QA-DT-Conic Perspector (see QA-Co-1):

(a2 (p + q) (q – r) (p + r) (2 p + q + r) – b2 (p + q) (q + r) (2 p2 + p q + 3 p r – q r – r2) + c2 (p + r) (q + r) (2 p2 + 3 p q – q2 + p r – q r)) /

(a2 (p + q) (q – r) (p + r) – b2 (p + q) (q + r) (p + 3 r) + c2 (p + 3 q) (p + r) (q + r))

1st DT-Coordinate QA-DT-Conic Perspector (see QA-Co-1):

(b2 p2 – c2 p2 – a2 q2 + a2 r2)

(c4 p2 (p – q) q2 (p + q) (p2 – q2 – r2) + b4 p2 (p – r) r2 (p + r) (p2 – q2 – r2) + 2 b2 c2 p2 q2 r2 (3 p2 – q2 – r2) + a4 q2 r2 (p2 q2 – q4 + p2 r2 + 2 q2 r2 – r4) + a2 (-2 c2 p2 q2 r2 (p2 + q2 – r2) – 2 b2 p2 q2 r2 (p2 – q2 + r2)))

Properties



Estimated human page views: 563

Scroll naar boven