QA-L2: QA-P2-P4-P6 Line
The QA-L2-line is the line through QA-P2 (Euler-Poncelet Point) and QA-P4 (Isogonal Center). QA-P6 (Parabola Axes Crosspoint) also lies on this line and is their Midpoint. The expression of the line is not a simple one.

1st CT-coefficient:
b2 p r2 (2 SA p – 2 SB q) ((b2 – a2) p q + b2 p r – a2 q r) (b2 p r + (b2 – a2) p q + (b2 – c2) q r – 2 SB q2)
– c2 p q2 (2 SA p – 2 SC r) ((c2 – a2) p r + c2 p q – a2 q r) (c2 p q + (c2 – a2) p r + (c2 – b2) q r – 2 SC r2)
1st DT-coefficient:
(c2 q2 – b2 r2) (-a2 p2 (c4 q4+b4 r4)+(b4 p4+a4 q4) r2 SB+q2 (c4 p4+a4 r4) SC+2 a2 p2 q2 r2 (SA2-SB SC))
Properties
- QA-L2 = QA-P2.QA-P4 // QA-P1.QA-P32 // QA-P7.QA-P8 // QA-P12.QA-P24 // QA-P11.QA-P38
- QA-L2 and the 5th Point tangent at QA-P2 are orthogonal. See QA-Tf9.
- QA-L2 and the asymptote of QA-Cu7 (QA-Quasi Isogonal Cubic) are perpendicular. See QA-Cu7 and QA-4.
- The QA-Möbius Conjugate (QA-Tf4) of QA-P41 is a point on QA-L2.
Estimated human page views: 539
