QG-P19: Quasi Isogonal Conjugate of QG-P1


QG-P19 is the intersection of the reflections of the two QA-DT-side lines unequal QG-L1 in the angle bisectors of the opposite sides of the quadrigon.

This point and its properties are found by Eckart Schmidt (December 12, 2012).

Infovisual QG-P19-infovisual-cvt-01.png
CT-Coordinates in 1st QA-Quadrigon

(a2 q r ((p + q) (b2 p + a2 q) r2 + c2 p q (p q – r2)) :

-p r (b4 p (p + q) r (q + r) – (a2 – c2) q2 (a2 (p + q) r – c2 p (q + r)) + b2 q (-a2 (p + q) (p – q – r) r + c2 p (p + q – r) (q + r))) :

c2 p q (c2 p2 q (q + r) + r (b2 p2 (q + r) + a2 q (-p2 + q r))))

DT-Coordinates in 1st QA-Quadrigon

(-(a2 + b2 – c2) p2 (c2 q2 + b2 r2) :

(b2 p2 + a2 q2) (c2 q2 + b2 r2) :

(a2 – b2 – c2) (b2 p2 + a2 q2) r2)

CT-Coordinates in 1st QL-Quadrigon

(a2 l (-a2 (l – m) (l – n) + c2 (l – n) (-m + n) + b2 (l (m – n) + m (-2 m + n))) :

b2 m (a2 l2 + c2 n2) :

c2 n (-a2 (l – m) (l – n) + c2 (l – n) (-m + n) + b2 (l (m – n) + m (-2 m + n))))

DT-Coordinates in 1st QL-Quadrigon

(-m2 (a4 (l2 – n2) + b2 (b2 – c2) (m2 – n2) + a2 (c2 (-l2 + n2) + b2 (l2 + m2 + 2 n2))) :

2 b2 c2 (l2 + m2) n2 + c4 n2 (-l2 + n2) + 2 a2 b2 l2 (m2 + n2) + a4 (l4 – l2 n2) + b4 (m4 – l2 n2) :

m2 (b4 (l2 – m2) + c4 (l2 – n2) – b2 c2 (2 l2 + m2 + n2) + a2 (b2 (-l2 + m2) + c2 (-l2 + n2))))

Properties
  • The QL-Tf1 image of QG-P19 is a point on QA-Ci1.
  • QG-P19 is the QG-Tf2 image of QG-P1.
  • QG-P19 is the QA-Tf2 image of the QG-P18.
  • Let Si = QG-P1, Xi = QG-P18 and Yi = QG-P19 resp. in QA-Quadrigon-i (i=1,2,3). Now Si.Xj ^ Sj.Xi = Yk, Si.Yj ^ Sj.Yi = Xk, Xi.Yj ^ Xj.Yi = Sk.
  • The Triangles formed by the QA-versions of QG-P1, QG-P18 and QG-P19 are pairwise perspective triangles. Their centers of perspectivity are collinear.
  • QA-P4 lies on the circle defined by the 3 QA-versions of QG-P19.
  • QG-P19 is concyclic with QG2P2a, QG-2P2b, QA-P4 (the circle is the QL-Tf1 image of QA-Ci1).
  • QG-P19 lies on QA-Cu7 (as 4th intersection with the circle through QG2P2a, QG-2P2b, QA-P4).
  • The altitudes of the Triangle formed by the 3 QA-versions of QG-P19 are concurrent in a point on QA-P12.QA-P24.
  • The Polar (see [13], Polar) of QG-P19 wrt any circumscribed conic of the Reference Quadrigon is a line through QG-P18.
  • The Triple Triangle of QG-P19 is perspective with all QA-Component Triangles (see QA-Tr-1 for Desmic Triple Triangles).



Estimated human page views: 522

Scroll naar boven