QA-Cu2: QA-DT-P5 Cubic


QA-Cu2 is the locus of the Doublepoints created by the QA-Line Involution (QA-Tf1) of all lines through QA-P5. It is a pivotal isocubic of the Diagonal Triangle, invariant wrt the Involutary Conjugate wrt pivot QA-P5.

QA-Cu2 is a pK(QA-P16,QA-P5) cubic wrt the QA-Diagonal Triangle in the terminology of Bernard Gibert (see [17b]). (note Eckart Schmidt)

Infovisual QA-Cu2-infovisual-cvt-01.gif
Equation CT-notation:

(p+q) (p+q+2r) (q x – p y) x y

+ (p+r) (p+2q+r) (p z – r x) x z

+ (q+r) (2p+q+r) (r y – q z) y z = 0

Equation DT-notation:

(4 (p4+q2 r2) – (p2+q2+r2)2) (r2 y2-q2 z2) x

+ (4 (q4+p2 r2) – (p2+q2+r2)2) (p2 z2-r2 x2) y

+ (4 (r4+p2 q2) – (p2+q2+r2)2) (q2 x2-p2 y2) z = 0

Infovisual QA-Cu2-infovisual-cvt-02.gif
Properties
  • These points lie on QA-Cu2:
  • The lines M12.M34, M13.M24, M14.M23 are the asymptotes of QA-Cu2, where Mij is the Midpoint of Pi.Pj and (i,j) ∈ (1,2,3,4).
  • The 3 asymptotes of QA-Cu2 meet at QA-P1.
  • The tangents at P1, P2, P3, P4 meet at QA-P5.
  • The tangents at S1, S2, S3 and QA-P5 meet at QA-P17 which is the Involutary Conjugate of QA-P5 on the cubic.
  • The QA-Cu2 cubic is symmetrical wrt QA-P1 (note Eckart Schmidt).



Estimated human page views: 568

Scroll naar boven