QA-Cu4: QA-DT-P19 Cubic


QA-Cu4 is the locus of the Doublepoints created by the QA-Line Involution (QA-Tf1) of all lines through QA-P19. It is a pivotal isocubic of the QA-Diagonal Triangle, invariant wrt the Involutary Conjugate with pivot QA-P19.

QA-Cu4 is a pK(QA-P16,QA-P19) cubic wrt the QA-Diagonal Triangle in the terminology of Bernard Gibert (see [17b]). (note Eckart Schmidt)

Infovisual QA-Cu4-infovisual-cvt-01.gif
Equation CT-notation:

r2 (p+q) (p+q+2r) (p2 + q2) (q x – p y) x y

+ q2 (p+r) (p+2q+r) (p2 + r2) (p z – r x) x z

+ p2 (q+r) (2p+q+r) (q2 + r2) (r y – q z) y z = 0

Equation DT-notation:

(-p2+q2+r2)(r2 y2-q2 z2)x +(p2-q2+r2)(-r2 x2+p2 z2)y + (p2+q2-r2) (q2 x2-p2 y2) z = 0

Properties



Estimated human page views: 475

Scroll naar boven